
486 CRYSTALLOGRAPHY, GEOMETRY AND PHYSICS IN H I G H E R  DIMENSIONS.  XI 

Concluding remarks 

In § I, we explained a geometric method for construct- 
ing crystal families of space E '~ out of the different 
families of spaces E 1 and E 2 and the gZ-irr, families. 
The irreducible families were studied in detail in § II 
and five types of irreducibility were exhibited. 

This method enables us to give a name to the crystal 
family connected to their construction. Then, we 
easily deduce the WPV symbols of the holohedries. 
As for the gZ-irr, family, the name explains their 
construction or sometimes the PSOs that characterize 
the families. 

In forthcoming papers, we state systematic rules 
for giving a name to crystal families and we list all 
crystal families of spaces E 1, E 2, E 3, E 4, E 5 (paper 
XII; Weigel & Veysseyre, 1993), space E 6 (paper 
XIII) and space E 7 (paper XIV). 

The authors thank E. F. Bertaut for many helpful 
and stimulating discussions. 
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Abstract 

In paper XI [Veysseyre, Weigel & Phan (1993). Acta 
Cryst. A49, 481-486], the definition was given of the 
geometrically Z-irreducible and the geometrically Z- 
reducible crystal families of the n-dimensional space 
and a general method was described for constructing 
all crystal families. In this paper, systematic rules are 
stated for giving names to the crystal families and 
these are listed for spaces E l, E 2, E 3, E 4 and E 5. 

Introduction 

The aim of this paper is to explain how the geometri- 
cally Z-reducible (gZ-red.) property of a crystal 
family enables us to give a name to these families 
through some examples. This paper is divided into 
three sections: 

(i) § 1 is concerned with the counting (i.e. the num- 
ber) of all crystal families from one- to seven- 
dimensional spaces; 

(ii) § 2 expresses strict rules that lead us to assign 
correct names to the gZ-red, crystal families of E" 
and mainly to spaces of dimensions one to five; 

0108-7673/93/030486-07506.00 

(iii) § 3 explains the connection between the transi- 
tive crystallographic rotations (Bertaut, 1988) and the 
geometrically Z-irreducible (gZ-irr.) families and 
explains the choice of their names too (for the one- 
to five-dimensional spaces). 

I. Counting of all crystal families of space E" 
The study of all partitions of space E" into subspaces 
that are two-by-two orthogonal enables us to describe 
all gZ-red, crystal families. The type of the gZ-reduci- 
bility is given by the dimension of each space occur- 
ring in the splitting of space E" and by the type of 
the irreducibility of the crystal family (Veysseyre, 
Weigel & Phan, 1993). 

For instance, if we consider the partition E 6=  E3~) 
E2• E l, we say that the type of crystal family built 
in this way is (3) + (2) + 1, where (3) means 3 or 1,1,1 
and (2) means 2 or 1,1. A general formula will be 
given § 2. In fact, we can select in space E 3 one  of 
the two gZ-irr, families and in space E 2 one of the 
three gZ-irr, families (Table 1) and obviously in space 
E 1 the only gZ-irr, family, viz the segment. So, we 
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T a b l e  1. Names of the crystallographic families and their geometrical Z-reducibility or irreducibility 

(i) N u m b e r  o f  the  c rys ta l  f a m i l y  [ n o m e n c l a t u r e  o f  B r o w n  et al. (1978) fo r  n - - 4  a n d  o f  P l e sken  (1981) fo r  n = 5]; (ii) n a m e  o f  t he  
f ami ly ;  (iii) s y m b o l  o f  the  h o l o h e d r y ;  (iv) o r d e r  o f  the  h o l o h e d r y ;  (v) t y p e  o f  the  g e o m e t r i c a l  Z r educ ib i l i t y  o r  i r r educ ib i l i t y  o f  the  f ami ly .  

T w o  d i m e n s i o n s  T h r e e  d i m e n s i o n s  
(i) (ii) (iii) (iv) (v) (i) (ii) (iii) (iv) (v) 

I Triclinic 1 2 1,1,1 
I Oblic 2 2 1,7 II Oblical 2_1_ m 4 1,7+ 1 

(oblique) (monoclinic) or (2 /m)  
II Rectangle m ± rn 4 1 + 1 III  Orthorhombic m _1_ rn _L m 8 1 + 1 + 1 

(rectangular) or (2mm) or (2/mmm) 
III  Square 4mm 8 2 IV Tetragonal 4ram Z m 16 2 + 1 

(tetragon) or (4 /mmm) 
IV Hexagon 6ram 12 2 V Hexagonal 6ram ± m 24 2 + 1 

or (6/mmm) 
VI Cubic m3m 48 3 

Table 2. Names of the crystallographic families and their geometrical Z-reducibility or irreducibility 

(i) Number of the crystal family [nomenclature of Brown et aL (1978) for n =4 and of Plesken (1981) for n = 5]; (ii) name of the 
f ami ly ;  (iii) s y m b o l  o f  the  h o l o h e d r y ;  (iv) o r d e r  o f  the  h o l o h e d r y ;  (v) t ype  o f  the  g e o m e t r i c a l  Z - r e d u c i b i l i t y  or  i r r educ ib i l i t y  o f  the  f ami ly .  

Five d i m e n s i o n s  Four dimensions 
(i) (ii) (iii) (iv) (v) (i) (ii) (iii) (iv) (v) 

I Decaclinic T(i 5) 2 1,1,1,1,1 
I Hexaclinic 14 2 1,1,1,1 II Hexaclinic-al 14 _L m 4 1,1,1,1 + 1 

III  Triclinic oblic 1 ± 2  4 1,1,1 + 1,1 
II Triclinic-al T ± m 4 1,1,1 + 1 IV Triclinic rectangle ] ± m _1_ m 8 1,1,1 + 1 + 1 
I I I  Di oblic 2_1_2 4 1,1+ 1,1 V Di oblic-al 2.L2.1. m 8 1 ,1+1,1+1 

VI Triclinic square 1.1.4rmn 16 1,1,1 + 2 
VII Triclinic hexagon 1.L6mm 24 1,1,1 + 2  

IV Oblic rectangle 2.Lm.l_m 8 1,1 + 1+1 VIII  Oblic orthorhombic 2 ± m ± m ± m  16 1 , 1 + 1 + 1 + 1  
V Orthotopic 4 m z r n i m Z m  16 1 + 1 + 1 + 1  IX Orthotopic 5 m ± m Z m ± m ± m  32 1 + 1 + 1 + 1 + 1  
VI Square oblic 4ram±2 16 2+1,1 X Square oblic-al 4 m m ± 2 ± m  32 2 + 1 , 1 + 1  
VII Hexagon oblic 6ram±2 24 2+1,1 XI Hexagon oblic-al 6 r n m Z 2 Z m  48 2 + 1 , 1 + 1  
VIII  Diclinic di 44* 4 2,7' XII  Diclinic di 44* ± m 8 2,---2'+ 1 

square square-al 
IX Diclinic di 66* 6 2,---2' XI I I  Diclinic di 66"± m 12 2,--2'+ 1 

hexagon hexagon-al 
X Square rectangle 4mm.l_mzrn 32 2 + 1 + 1  XIV Square orthorhombic 4rnm±m. l_mZm 64 2 + 1 + 1 + 1  
XI Hexagon rectangle 6mm.l. m Z m  48 2 + 1 + 1  XV Hexagon 6 r n m ± m ± m ± m  96 2 + 1 + 1 + 1  

orthorhombic 
XI I Monoclinic di 2, 44", 2 8 2,-2 XVI Monoclinic 2, 44", 2 _1. m 16 2,~ + 1 

square di square-ai 
XII I  Monoclinic di 2, 66*, 2 12 2,---2 XVII Monoclinic 2, 66*, 2 ± rn 24 2,---2 + 1 

hexagon di hexagon-al 
XVIII  Cubic oblic m 3 m ± 2  96 3+  1,7 

XIV Di square 4mmZ4mm 64 2 + 2  XIX Di square-al 4mrnZ4mrnZm 128 2 + 2 +  1 
XV Hexagon square 6mmZ4rnm 96 2 + 2  XX Hexagon square-al 6 m m ± 4 m m ±  m 192 2 + 2 + 1  
XVI Di hexagon 6mrn.L6mm 144 2 + 2  XXI Di hexagon-al 6 m m ± 6 m m Z r n  288 2 + 2 + 1  
XVII Cubic-al m 3 m l m  96 3+1 XXII  Cubic rectangle m 3 m l r n ± m  192 3 + 1 + 1  
XVIII  Monoclinic di ±so 88, 2 16 4' XXII I  Monoclinic 88, 2 ± m 32 4 '+  1 

square (octodic) di ±so square-al 
(octodic-al) 

XIX Decadic 102, 2 20 4' XXIV Decadic-al 102, 2 ± m 40 4 '+  1 
XX Monoclinic di ±so 122 , 2 24 4' XXV Monoclinic 122,2 _L rn 48 4' + 1 

hexagon di ±so hexagon-al 
(dodecadic) (dodecadic-al) 

XXVI Cubic square m3rn±4mm 384 3 + 2  
XXVII Cubic hexagon m 3 m ± 6 m m  576 3 + 2  

XXI Di ±so hexagon 6mrnZ6mm, 122 288 4 XXVIII  Di ±so hexagon-al 6mm.l_6rnm, 122_1_m 576 4+1  
XXII  Rhombotopic - I  43rn, 102 240 4 XXIX (Rhombotopic -~)-al  43m, 102± rn 480 4+  1 
XXII I  Hypercubic 4 m3m, 88 384 4 XXX Hypercubic 4-al rn3m, 88 ± rn 768 4+  1 

(43m, 102)3-6 1440 5 XXXI Rhombotopic - 5  
XXXII  Hypercubic 5 (m~m, 82)5-5 3840 5 

obtain 2 x 3 = 6 gZ-red,  families of  space E 6, which 
are: the triclinic oblic-al family of  type 1,1,1 + 1,1 + 1; 
the triclinic square-al and the triclinic hexagonal  
families of  type 1,1,1 + 2 +  1; the cubic oblic-al family 
of  type 3 +  1,1 + 1; the cubic square-al and the cubic 
hexagonal  families of  type 3 + 2 +  1. All partitions of  
space E 6 a r e  to be studied similarly. 

We then add the gZ-irr, families for each space 
E n. This number  depends  on the number n; it is 
different if n is an odd or even number and it depends  
on the possible  crystal point-symmetry operations 
(PSOs) of  this space, i.e. of  Euler indicatrix ~ ( n )  (§ 3). 

The number  of  each crystal family, its name,  
the Weige l -Phan-Veysseyre  (WPV) symbols  o f  its 



488 CRYSTALLOGRAPHY, GEOMETRY AND PHYSICS IN H I G H E R  DIMENSIONS.  XII 

Table 3. Number of crystal families according to the types of decomposition 

For each dimension of  space, we give the different types of  decomposition and on the same line the number of  crystal families belonging 
to this type. The last line gives the number of  gZ-irr, crystal families, e.g. there are 13 gZ-irr, crystal families in space E 6 and 3 in space 
E 7. For each type of  splitting of  space, we explain how we find the number of crystal families: either a product of two numbers if the 
space dimensions are different or the number of  combinations with repetitions if the space dimensions are the same. 

E l E 2 E 3 E 4 E 5 E 6 E 7 

E t 1 E I ~ [ E  t ] 1 El~) [E 2 ] 4 EI0)[E 3 ] 6 EI(~)[E 4 ] 23 E I ~ [ E  s ] 32 Ett~[E 6 ] 91 
- -  E 2 3 E 3 2 E2~) E 2 6 E2~ E 3 6 E2t~ E 4 33 E2~ E 5 9 

1 - -  11 E 5 3 E 3 ~ E  3 3 E 3 ~ E  4 2 2  

4 6 E 2 ~ E 2 ~ E  2 10 E 2 ~ E 2 ~ E  3 12 
23 32 E 6 13 E 7 3 

91 137 ,) 6-- 6 = 3 x 2  3 3 = 3 x l l  9 = 3 x 3  

3 : ( 2 + 2 2 - 1  ) 2 2 = 2 x l l  

/ ' 3 + 3 - 1 )  = (3+22-1 )  x 
10=~ 3 12 2 

holohedries as well as its order and the type of reduci- 
bility or irreducibility are listed in Table 1 for n = 2 
and n = 3 and Table 2 for n = 4 and n = 5. 

Table 3 gives the number of crystal families accord- 
ing to their types of splitting. For example, in the first 
line is the entry [E3]q)E 1 (space E4). The symbol 
[E 3] denotes all the crystal families of space E 3, i.e. 
six crystal families. Therefore, [E3]O)E 1 includes 
three types of splitting: 

(i) E ' ~  El:  type 3 + 1, which includes two crystal 
families; triclinic-al and cubic-al; 

(ii), (iii) [E2]~E~@E 1, which is the abridged 
writing of E2~E1GE1 and EIO3EIO3E1GEI. 

The splitting EEOE10E~ gives three crystal 
families of type 2 + 1.1.1: oblic rectangle, square rec- 
tangle and hexagon rectangle (Table 2). The splitting 
E 1 ~) E 1 ~) E 1 • E 1 gives one crystal family of type 
1.1.1.1.1.1.1, which is the orthotopic 4. Therefore, 
there are 2-t-3-1-1 = 6 crystal families, which is the 
number shown in Table 3 for [ E 3 ] ~ ) E  1. 

II. Names of  the gZ-red,  crystal families of  space E n 

In paper XI (Veysseyre, Weigel & Phan, 1993), we 
gave a definition of the gZ-red, and of the gZ-irr. 
crystal families connected to the bases of the irreduc- 
ible representations of their holohedries. We have 
explained the building of the primitive cell of a gZ- 
red. family as the rectangular product of two or more 
subcells. In this section, we give another property of 
the gZ-red, crystal families. First, let us consider the 
translation group of the primitive lattice of the 
gZ-red, tetragonal family ua l+va2+waa ,  where 
(u ,v ,w)~Z3:al- l -a2 and Ilalll=lla211; a3-l-al and 
a3-1-a2. It can be considered as the direct sum 0) of 
two translation groups of two orthogonal primitive 
lattices: that of the square family ual + va2 and that 
of the segment family of El ,  wa3. Therefore, we can 

write 

ual0) va2@ wa3 -- (ual + va2)@ w a 3 .  

Note that the reducibility of the tetragonal family 
into gZ-irr, subfamilies (square family of E 2 and 
segment family of E 1) is possible in only one way. 

In the same way, the only possible reduction of the 
gZ-red, family number XV of E 4, viz the hexagon 
square family, into gZ-irr, subfamilies is 

u a l  ~)  t~a2(~ w a  3 ~) s a 4 :  ( u a !  ~ ua2) G ( w a  3 ~) sa4) 

where 

and 
(u, v ) ~ Z  ~, (w, s ) ~ Z  2 

Ila, ll = Ila211, Ila311--Ila411. 
ualGva2 is the translation group of the hexagon 
family of E 2 and w a 3 ~  sa4 that of the square family 
of E 2 (Fig. 1). We say that the gZ-red, family hexagon 
square of E 4 (family number XV) is the orthogonal 
product of two gZ-irr, subfamilies of E 2, the hexagon 
square of E 4 [hexagon (of E2)O)square (of E 2 ) ] ,  

Fig. 1. Cell of  the lattice of  the hexagon square family of  E 4. The 
two planes ( X Y )  and ( Z T )  are orthogonal; they intersect only 
at one point. Ila, II -- Ila211, lla311 -- Ila, ll, where II II means Euclidean 
norm. 
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according to the formula 

F~v = F2u + F2v. 
11 n Fp means the family number p of space E , of 

dimension n, according to the nomenclature of 
Brown, Billow Neubiiser, Wondratschek & Zassen- 
haus (1978) (see Tables 1 and 2). 

As a counter-example, let us consider the 
orthogonal di iso square family, i.e. the hypercubic 4 
family of E 4. There is no unique way to reduce it 
into two orthogonal subfamilies; there are three pos- 
sible ways to reduce it into two isosquare subfamilies 
[ X Y  and ZT,  X Z  and YT, X T  and YZ, if (X, Y, Z, T) 
are the vectors that define the primitive cell of this 
Family]. This family is gZ-irr, of type 4 (Veysseyre et 
al. 1993). 

Lastly, let us remember another fundamental 
property of the holohedry of a gZ-red, family: it is 
the direct product of the holohedries of the gZ-irr. 
subfamilies that appear in the construction of the 
gZ-red, family. This property is obvious in the WPV 
symbols. For instance, 4rnrn is the symbol of the 
point-symmetry group of the square, 6ram is that of 
the hexagon and m is that of the segment, therefore 
4 m m  ± m is the WPV symbol of the holohedry of the 
tetragonal family, 6mm. l_4mm that of the hexagon 
square family of E 4. 

Now, we can generalize these properties for any 
gZ-red, crystal family Fp of E". Indeed, each gZ-red. 
crystal family of space E" can be split in a unique 
way, except for the order, as follows: 

rl F p = F q G F { G F k G . . . ,  (1) 

where n/, i, j, p, q}, r, . . .  are integers, i>_j >_ k>_ . . . .  
E = E  G E  j O E  .. means that the s p a c e E  " i s t h e  
direct sum of subspaces E/, E l , . . .  of dimensions 
i, j, . . . .  , two-by-two orthogonal. F/o, F j,  F h are gZ- 
irr. families belonging to spaces E i, E j, E k, respec- 

i tively. Fq is the gZ-irr, family of space E / numbered 
q, and so on . . . .  

As previously, the direct product of the different 
lattice-translation groups of the gZ-irr, subfamilies 
Fq, F ~ , . . .  is identical with the lattice translation 
group of the gZ-red, family Fp. The holohedries,* 
i.e. the point groups of the empty lattices, have the 
same property. 

Now, we establish precise rules for giving a name 
to the gZ-red, families. We have already noticed that 
the order of the terms in (1) is of no importance. 

* Generally, the holohedry of a crystal family is the point group 
of the primitive empty lattice. There are a few exceptions. For 
instance, the order of the holohedry of the hypercubic 4 centred 
lattice is 1152 = 3 x 384, whereas the order of the holohedry of the 
primitive hypercubic 4 lattice is 384. We explain this property 
(Veysseyre, Weigal, Phan & Effantin, 1984) by the Pythagorus 
theorem: the half hyperdiagonal of the hypercube is equal to its 
edge length if and only if, for n=4, (a2/4+a2/4+a2/4+ 
a2/4) 1/2 = a. 

Rule 1. The name of the gZ-red, crystal family F~ 
is the succession of the names of the gZ-irr, crystal 
subfamilies Fq, F { , . . . ,  the adjective 'orthogonal '  
being omitted. 

Fxvm FaI + F2v Let us give an example. Consider 5 = 
(and E 5 = E 3 0  E2), where Fal is the cubic family of 
E 3 and F2v is the hexagon family of E 2. The name 

Fxvm is thus 'cubic hexagon',  which of the family 5 
means orthogonal cubic hexagon. However, this 
decomposition is commutative; the name of this 
family could alternatively be 'hexagon cubic'. There- 
fore, we suggest the adoption of the following 
arbitrary order for the name of a gZ-red, crystal 
family. 

Rule 2. If all the indices i, j, k, . . .  in (1) are 
different, there is no difficulty or ambiguity because 
we supposed i>-j>- k . . .  (hence i > j >  k . . . )  

Fxviix is cubic Therefore, the name for the family 5 
hexagon. 

Now, let us suppose that two or more indices are 
equal. Consider Fp -- F/q • Fir O) Fis • . . . .  

(a) If q, r and s are different, we start with the 
name of the subfamily whose holohedry is of highest 
order. For this reason, the name of the family F4v is 
hexagon square and not square hexagon because the 
order of the holohedry 'hexagon'  is 12 and that of 
the square is 8 (Tables 1 and 2). 

(b) If q, r, s , . . .  are equal, we shorten the names 
with the prefix di or t r i . . . ;  for instance, di cubic 
family or tri hexagon family, not cubic cubic family 
etc. 

Rule 3. There exists only one crystal family in 
space E ~ (of dimension 1), viz F~, which is obviously 
irreducible, of type 1. We explain our choices through 
some examples. 

(a)  F~,= F ~ p G F { G . . . G F I ,  

E" = E i O  E J G . . . t ~  E 1 

Only one space, E l, occurs in the decomposition. 
Then the name of the crystal family Fp is 

(name of the gZ-red, crystal family of 

space E"-~)-al ,  

'al '  being the abbreviation of orthogonal. The cell 
built in this way is a right hyperprism. Three particular 
examples are given. 

(1) = F v@ FI,  
F3v is the hexagonal family; its cell is a right prism 
based on (a third of) a hexagon; 

(2)  4 = F 3 t ~ )  E l  Fxvll 
Faw~ is the cubic-al family (Tables 1 and 2); its cell 
is a right hyperprism based on a cube; 

(3) F5x  4 1 = Fxv0) FI ,  
F i x  is the hexagon square-al family; its cell is a right 
hyperprism based on a hexagon square. 
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(b) F ~ =  F ~  F{O. . . f f~  F~ff~ F{. 
Then, the name of the family F~ is the name of the 
subfamily of space E "-2 followed by 'rectangle', for 
example, the family 6 FXLVlII o f  space E 6, a hexagon 
square rectangle family, corresponds to the splitting 

6 -- F 4 V ~  V~ (~ V~ FXLVIII -- 

All crystal families of space E 6 will be listed in a 
forthcoming paper. 

(c) F~,= F ' q G F { G . . . O F { G F { G F { ,  where i >  
j > . . . > l .  
Then, the name of the family F~, is the name of the 
subfamily of space E"-3 followed by 'orthorhombic'. 
As an example, we give the 6 F L n l  cubic orthorhombic 
family (see table 1 and paper XIII)" 

6 FLII  I F 3 I ( ~  1 1 1 = FI ~ F I  ~ F I .  

(d) Lastly, if the number of subfamilies of type 
F{ is higher than three, the name of the family F~, 
ends with 'orthotopic h', where h is the number of 
F~ occurring in the general formula. We take a family 
of space E 7 to illustrate this case: 

= p{ @ pl @ FI @ F{ Fp 

is the triclinic orthotopic 4 family. 

III. Counting and names of the gZ-irreducible 
crystal families 

In this section, we explain how gZ-irr, crystal families 
are generated either by the transitive crystal rotations 
or by the product of transitive crystal rotations of the 
same angle. 

First, we recall some properties of transitive crystal 
rotations. 

III.1. The crystal (proper) rotations 

According to Hermann terminology (Hermann, 
1949), a transitive crystal PSO has only one class of 
conjugate roots. A transitive crystal PSO of finite 
order m only occurs in a space of dimension n equal 
to ~o(m), where ~0(m) is the Euler indicatrix of m, 
i.e. the number of integers prime with m and less than 
n. Bertaut (1988) established two scaling laws, which 
a r e  

~p(2m)= ~o(m) for m odd, 

~o(2m) =2~o(m) for m even, 

e.g. 

1 =  ~ , (1 )  = ~ ( 2 ) ,  

2 = ~o(3) = ~p(6) = ~o(4) ,  

4= ~o(5)= ~0(10)= ~o(8)= ~o(12), 

6 = 9 ( 7 )  = ~0(14)  = ~o(9) = ~o(18) .  

Table 4. Number and symbols of transitive and 
intransitive crystal rotations 

Transitive Intransitive 
rotations rotations Number 

Space E 2 4; 3; 6 1; 2 5 
Space E 3 1; 2; 3; 4; 6 5 
Space E 4 88; 55; 102(1010) 1; 2; 3; 4; 6 

122(1212) 14 = 22; 23; 24; 26; 19 
33; 34; 36; 44; 46; 66 

Space E 5 The 19 crystal 19 
rotations of 
space E 4 

Since ~0(3)=2, a threefold rotation is a transitive 
crystal PSO in space E 2, whereas it is an 'intransitive' 
crystal PSO in space E 3 (Hermann terminology). 
More accurately, in a space of dimension n, a crystal 
PSO that has only one class of conjugate roots may 
be a transitive crystal PSO if its order satisfies ~o(m) = 
n or an intransitive PSO if its order satisfies ~o (m) < n. 
A crystal PSO that has several classes of conjugate 
roots or has multiple roots is an intransitive PSO. For 
instance, in s p a c e  E 4, the double rotations 24, 22 = 14, 
34 , . . .  are intransitive rotations, whereas the double 
rotations 55, 88, 102(10 10) and 122(12 12) are transi- 
tive rotations. All these double rotations appear for 
the first time in space E 4. Let us note that the simple 
crystal rotations 5, 8, 10, 12 are forbidden in E", 
whatever n (for the crystals but not for the quasi- 
crystals). 

The transitive and intransitive crystal rotations of 
spaces E 2, E 3, E 4 and E s are listed in Table 4. Fig. 
2 illustrates the double rotation 6~61 of order six 
[6~6~] 6 =  1 (identity). 

A significant property of a transitive crystal rotation 
of space E" can be pointed out: it does not leave 
invariant any subspace of dimension lower than n 
except the point chosen as origin. For instance, 4~y 
is transitive in space Exy but intransitive in space Exy~ 
(the axis z is invariant) and in space Exyz, [the plane 
(zt) is invariant]. This property explains why the 
gZ-irr, crystal families are generated by the transitive 

P ' ~  p, 

\ \ q, 

Fig. 2. Double crystallographic rotation 6t6 I. ¢, and q are the 
projections of P onto the planes X Y  and Z T ,  which are 
orthogonal. Rotation by 27r/6 into the plane X Y :  ¢~ ~ 1,'. Rota- 
tion by 2rr/6 into the plane Z T :  q ~ q'. P'  is the point for which 
the projections are ¢~' and q'. Double rotation 6~61: P ~  P'. 
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crystal rotations• Another type of crystal rotation 
generates gZ-irr, crystal families; they are the rota- 
tions called 'degenerate'  in a previous paper (Weigel, 
Veysseyre, Phan, Effantin & Billiet, 1984)• Degenerate 
means that a root of the characteristic polynomial is 
of multiple order. Examples in space E 4 are  L = (22), 
33", 44", 66*. We now describe a method for con- 
structing gZ-irr, crystal families of space E 4. 

111.2. From the transitive crystal rotations and the 
degenerate crystal rotations to the gZ-irr, crystal 
families 

We explain this method through three examples, 
described below. The general form of the metric 
tensor of a crystal cell (al ,  a2, a3, a4) of space E 4 is 
(see footnote t on p. 481 of paper XI) 

(i a i )b O D c 

E F 

The lower-case letters denote the squared norms of 
the sides: 

Ila, l12= a, Ila211~= b, Ila3112= c, Ila4l] 2= d. 

The capital letters denote all the scalar products of 
two vectors a~, aj: al "a2 = A, . . . .  

(1) We start with the group generated by the degen- 
erate rotation 4xy4z,, viz a group of order 4 (414~; 14; 
4-~4-1; 1). The matrix of the PSO 4141 is 

(0--10 i) 1 0 0 

0 0 0 - 

0 0 1 

We suppose that the two planes (a~a2) and (a3a4) are  
not orthogonal. Any point of the lattice defined by 
vectors ai can be written as 

o M  = ~, nia~ where ni ~ Z. 
i 

1 1 If f denotes the PSO 4xy4zt, we can write 

f ( ~ )  = -n2al  + n l a2 -  n4a3 q- n3a4, 

f being an isometry: 

IIO--~11= = II f (D-~)I [  2 Vn, ~ a .  

Easy calculations lead to the results 

IIO--M[I ~= an, + bn2 + cn3 + dn4+ 2n,n2A 

+ 2nl n3B + 2nl n4C "1- 2n2n3D 

+ 2nzn4E + 2n3n4F 

and 

IIT(U-~) II 2= anz + bn2 + cn44 dn 3 - 2n,n2A 

+ 2n2naB - 2n2n3C - 2nl n4D 

+2nln3E - 2n3naF. 

Hence, 

a=b, c=d, 

A = F = 0 ,  C = - D ,  B = E .  

The metric tensor in this case is 

(i0 B C) a - C  B 

- C  c 0 

B 0 c 

It is the metric tensor of a crystal family called 
'diclinic di square'. 

We can add two rotations, for instance a twofold 
rotation 2r, denoted g: (1 00 !) 

0 - 1  0 

0 0 1 " 

0 0 0 - 

We generate a group of order 8, 

g ( ~ )  = nlal - n2a2+ n3a3- naa4. 

A similar calculation (llg(O--~)I1= = 110--~211) gives the 
results 

a = b, c =  d, 

A = F = C = D = O ,  B = E .  

The metric tensor is then 

(i 0 !) 0 c 

B 0 

It is the metric tensor of a crystal family called 'mono- 
clinic di square'. The type of the gZ-irr, of these two 
families has been studied• 

The rotations 33* and 66* can be similarly studied 
and lead to the crystal families diclinic di hexagon 
and monoclinic di hexagon. 

(2) We now consider the transitive crystal rotation 
88. With respect to the general basis (ai), the matrix 
of this isometry, denoted f, is 

(!101)01 
0 0 

- 0 0 
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Table 5. Geometrically Z-irreducible crystal families 
o f  E 4 

The double rotations through the same angle generate gZ-irr. 
crystal families. The transitive double rotations 88, 55, 102 and 122 
appear in the second part of the table. 

Double crystal gZ-irr, crystal 
rotations families Type Symbol 

i4(22) Hexaclinic 1 1,1 ,___1,1 
44 Diclinic di square 4 2,2' 

Monoclinic di square 3 2,7 
33 and 66 Diclinic di hexagon 4 2,---2' 

Monoclinic di hexagon 3 2,---2 

88 (and 44) Monoclinic di iso 5 4' 
square (octodic) 

Hypercubic 4 2 4 
122 (and 66 and 33) Monoclinic di iso 5 4' 

hexagon (dodecadic) 
Di iso hexagon 2 4 

55 and 102 Decadic 5 4' 
Rhombotopic - I  2 4 

Similar calculations give, with respect to the basis 
( a l ,  a2 ,  a3 ,  a4) ,  the metric tensor 

a A 0 -A) 
A a A 0 

0 A a A 

- A  0 A a 

or, with respect to the b a s i s  (al , a3 ,  a2,  a4) ,  

(!a o a 
A a 

A 0 

This is the metric tensor of the cell of the 'monoclinic 
di iso square' family. Obviously, if A = 0, we obtain 
the 'hypercubic family'. 

(3) The third example involves the transitive crys- 
tal rotations 55 and 102. Similar calculations to the 
previous ones with the double-rotation 5153 matrix (! 110) 

-1  0 1 

-1  0 0 

-1  0 0 

lead to the metric tensor 

a A 

A a 

- ½ ( a + 2 A )  a 

-½(a +2A)  -½(a +2A)  

- ½ ( a + 2 A )  - ½ ( a + 2 A ) \  

A -½(a+2A) / 
a A /  

This is the metric tensor of the crystal family called 
'decadic' (Table 2). A particular case is the 'rhom- 

1, botopic - z  family if A = - ½ ( a + 2 A )  or A = - a / 4 .  

Table 6. Geometrically Z-reducible crystal families 
generated by double rotations in E 4 

Names of the 
Double crystal gZ-red, crystal WPV symbols 

rotations families of the holohedries 

42 Square oblic 4ram _1_ 2 
62 and 32 Hexagon oblic 6ram_l_ 2 
64 and 43 Hexagon square 6ram .1_ 4mm 
63 Di hexagon 63, 2, 2.14 

All these results are summarized in Table 5. The 
11 gZ-irr, crystal families of space E 4 a r e  generated 
by the double rotations through the same angle; the 
four transitive crystal rotations are among them. We 
note that the gZ-irr, crystal families generated by the 
transitive rotations (lower part of Table 5) belong to 
the types 2 and 5 of irreducibility denoted 4 and 4' 
in s p a c e  E 4, the other ones belong to the types 1, 3 
and 4, denoted respectively 1,1,1,1, 2,2 and 2~,2' 
(Veysseyre et al., 1993). The transitivity of the PSOs 
leads to an irreducibility symbol with one number 
only. As a counter-example, we list the gZ-red, crystal 
families generated by the double rotations through 
different angles (Table 6); the name of the family 
recalls the double rotation as far as possible. The 14 
types of crystal double rotations are listed in Tables 
5 and 6. 

Concluding remarks 
In this paper, we have listed the crystal families of 
spaces E 2, E 3, E 4, Es; we kept the order given by 
Brown et al. (1978) for space E 4 and by Plesken 
(1981) for space E 5 and by Plesken & Hanrath (1984) 
for space E 6. Nevertheless, we gave names and sym- 
bols to holohedries connected to our geometrical 
method (splitting of the space, type of the crystal 
rotations that generate the families). Similar results 
for spaces E 6 and E 7 will be published in papers 
XIII and XIV. 
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